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a b s t r a c t

A model is presented that calculates the highly nonlinear mechanical properties of polymers as a function
of temperature, strain and strain rate from their molecular structure. The model is based upon the pre-
mise that mechanical properties are a direct consequence of energy stored and energy dissipated during
deformation of a material. This premise is transformed into a consistent set of structure–property rela-
tions for the equation of state and the engineering constitutive relations in a polymer by quantifying
energy storage and loss at the molecular level of interactions between characteristic groups of atoms
in a polymer. The constitutive relations are formulated as a set of analytical equations that predict prop-
erties directly in terms of a small set of structural parameters that can be calculated directly and inde-
pendently from the chemical composition and morphology of a polymer.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In order to predict the performance of engineering components
fabricated from polymers, a reliable combination of equation of
state and constitutive model is required as input to simulation
tools such as dynamic finite element analysis, FEA. Ideally, the con-
stitutive model should capture the highly nonlinear temperature,
strain, and strain rate dependence of mechanical properties such
as all the elastic modulus components of the stiffness matrix,
and also be able to quantify the elastic and plastic components of
the polymer deformation, as well as indicate the most likely mode
of failure. The development of high performance materials for
demanding engineering applications often runs in a parallel opti-
misation process, which requires that the engineering property
parameters for component design be understood quantitatively
in terms of their chemical and morphological structure.

Most models for deformation and yield in a polymer can be
traced back to the activated viscosity model of Eyring (1936) and
Ree and Eyring (1955), where viscous flow occurs as molecules
in a material surmount a potential energy barrier that can be over-
come by a combination of thermal and mechanical energy. Earliest
tensile models for the yield stress of polymers poly(methyl meth-
acrylate), PMMA, poly(ethyl methacrylate), PEMA, and poly(pro-
pylene), PP, from Roetling (1965a,b, 1966) and for PMMA by
Bauwens-Crowet and Homes (1964) showed that the Eyring model
could be applied to polymers, provided that two different activated
processes are used, each with an activation energy with an Arrhe-

nius form. Bauwens-Crowet et al. (1969) updated the model to in-
clude poly(carbonate), PC, and poly(vinyl chloride), PVC, to
emphasise the two relaxation processes and then to include com-
pression for PMMA (Bauwens-Crowet, 1973), which also featured a
simple viscoelastic model with a parallel spring and dashpot com-
bination in series with another spring. Essentially, the models
identified yield with the transition from a high elastic modulus
glass to a viscous rubberlike state, which is equivalent to the ther-
mally induced glass transition condition. A weakness of these mod-
els was an inaccuracy at low yield stresses and higher
temperatures close to the glass transition temperature, Tg, which
can be attributed to the use of an Arrhenius activation function
for the rate-temperature transformations through Tg, rather than
more elaborate LWF-type functions (Ferry, 1961).

Boyce et al. (1988) considered large strain inelastic deformation
using a model based upon molecular structure of a glassy polymer,
with restrictions on intermolecular movement controlling the
deformation characteristics below yield and Tg, and entropic resis-
tance dominating the viscoelasticity above yield stress and Tg. The
main features of a stress–strain profile through yield are assigned
to different molecular mechanisms, and then parameters are quan-
tified in thermodynamic relations by fitting the model to experi-
mental data. The main practical weakness of such models is the
relatively low upper limit of rate of strain at about 1 s�1.

Chronologically, two major contributions to understanding
mechanical properties in polymers were the evolution of atomistic
modelling methods for polymers into a credible predictive tool by
Theodorou and Suter (1985, 1986), for example, and the extension
of mechanical testing through intermediate (10 s�1) to high
(104 s�1) strain rates by groups such as Walley et al. (1989, 1991)
and Walley and Field (1994), for example. Molecular modelling
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(in particular molecular mechanics and dynamics) has become a
standard method for calculating the properties of polymers, but
the time–temperature scales are not easily applied to real engi-
neering problems and the ‘black box’ character of numerical simu-
lations of large assemblies of atoms is not easily translated into an
analytical understanding of dynamic mechanical properties for
polymer design and application.

Richeton et al. (2003) reverted to a more continuum treatment
of the mechanical properties of amorphous polymers and started
by comparing three different models for yield, where the yield
and glass transition effects for time temperature superposition
used WLF-type relations. Further improvements on these models
used a cooperative relaxation effect for segmental relaxation to
reproduce new data on a range of polymers to high strain rates,
while retaining an essentially thermodynamic approach (Richeton
et al., 2005, 2006, 2007).

Mulliken and Boyce (2006) demonstrated that the stress–strain
response of PC and PMMA (Mulliken and Boyce, 2006) and PVC
(Soong et al., 2006), can be linked back to their dynamic mechanical
spectra. In particular, they show that the rate dependence of the a-
and b-transition loss peaks and storage modulus can be used to
model the shifts in modulus and yield as a function of temperature
and rate. In principle, this again allows the molecular processes
responsible for the different transition peaks to be connected (at
least qualitatively again) to the features in a constitutive model
by invoking molecular level theories for polymer plasticity. In prac-
tice, a more conventional empirical and phenomenological ap-
proach using springs and dashpots is employed to formulate a
strain and rate dependent constitutive model; a pair of parallel
springs and dashpots for the a- and b-processes and an additional
nonlinear parallel spring for the limiting elastic behaviour.

Most recently, Zerilli and Armstrong (2007) have formulated a
constitutive equation for dynamic deformation behaviour of poly-
mers which advocates the use of a ‘shear activation volume’ to
make time–temperature–stress transformations. However, their
main modelling refinement is perhaps simply using more parallel
spring–dashpot combinations to allow more detailed empirical fit-
ting of experimental data.

While most of the above approaches to modelling dynamic
mechanical properties in polymers can be loosely classed as ‘con-
tinuum’ or ‘mechanical’, with reference to their ultimate descrip-
tion of mechanical properties in terms of spring–dashpot
elements (albeit with a molecular basis), polymer industry has of-
ten taken an alternative more chemistry-based approach of using
quantitative structure–property relations, QSPR, to relate polymer
properties directly to their chemical composition and morphology.
Bondi (1968) relates properties to chemical structure through
molecular models and provides a strong ‘fundamental’ foundation
for later models that tend to make more direct empirical links be-
tween structure and properties. For example, the group contribu-
tion approach of van Krevelen (1993) is widely used to make
rapid estimates of properties simply using group additive parame-
ters. The connectivity indices method of Bicerano (1993), while
being an empirical approach, suggests that many polymer proper-
ties are linked to structure at a very simple level of nearest-neigh-
bour atomic bonding. Wu (1990, 1992) formulates useful
relationships between polymer chain structure (entanglement
density and characteristic ratio) and mechanical properties.

Within the QSPR approach, Seitz (1993) demonstrates a very
useful series of mainly empirical relationships between molecular
structure and mechanical properties, which like Bondi are based
largely on molecular concepts. The key point to note here is that
Seitz starts from a molecular interaction (potential function) model
to calculate the bulk elastic modulus of a polymer as the reference
modulus parameter and then uses a relation for Poisson’s ratio to
calculate all the other engineering moduli. Yield and strength prop-

erties are essentially empirical fits to molecular structure parame-
ters such as molecular cross-section dimensions, but nevertheless
do point to relatively straightforward fundamental relations be-
tween molecular structure and dynamic mechanical properties in
polymers.

This work attempts to combine the engineering transparency of
the continuum approach to constitutive models with the simplicity
of QSPR models that make direct relations between mechanical
properties and polymer structure, without losing the more funda-
mental insights into molecular mechanisms provided by molecular
modelling. To do this, we use the method of group interaction
modelling, GIM, of Porter (1995), which was suggested as a practi-
cal modelling tool to predict the thermomechanical properties of
polymers in a self-consistent framework that is applicable to any
state of matter (crystal, glass, rubber, or liquid) and captures the
main features of the highly nonlinear characteristics of polymer
viscoelasticity as a function of temperature, strain, and strain rate.
This approach allows the role of different structural elements in a
polymer to be clearly understood, and thereby leads to a new ap-
proach to the design of polymers for the demanding combinations
of properties required in modern engineering structures.

2. GIM model outline

GIM uses a highly focused molecular level model to calculate
the energy stored and dissipated during mechanical deformation.
Recent advances in GIM for thermoset resins (Jones, 2005; Fore-
man et al., 2006) and silk biopolymers (Vollrath and Porter,
2005; Porter and Vollrath, 2008) are then applied here to transform
the equation of state and dynamic mechanical profile for a polymer
into a nonlinear stress–strain profile that is the basis for the consti-
tutive model. In order to clarify the modelling process, the key
steps in the GIM model are:

1. Select the characteristic group of atoms that defines the
chemical structure of the polymer, which is usually the
mer unit.

2. Assign a limited number of structural parameters to the
group that allow its average dimensions and main molecular
energy terms to be calculated using either empirical meth-
ods or atomistic simulations at whatever appropriate level
of complexity and rigour.

3. Use the dimensions and energy terms in a potential function
to calculate volumetric properties such as density and ther-
mal expansion.

4. Use the volumetric derivatives of the potential function to
calculate pressure and bulk elastic modulus as purely elastic
reference parameters that effectively define the limiting
high rate (shock) equation of state for the polymer.

5. Calculate the glass transition and crystal melt temperatures
as a function of frequency using the elastic instability condi-
tion from the potential function with the Born criterion as
the point where the second derivative of energy between
groups tends to zero.

6. Define and calculate any secondary relaxation points that
are usually the onset of skeletal mobility in specific atomic
sub-groups.

7. Calculate the total energy dissipation associated with the
transitions in the form of the area under the loss tangent
curves as a function of temperature, and then assign simple
normal distribution functions to quantify the detailed loss
tangent distributions with temperature.

8. Combine the reference elastic bulk modulus with the energy
dissipation to calculate the engineering properties of bulk
and tensile modulus as a function of temperature and fre-
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quency; this gives a dynamic mechanical spectrum for the
polymer. Essentially, measured modulus values are reduced
from their purely elastic value as more energy is converted
to heat by molecular redistribution under strain. This
includes the transition from glass to rubber as a continuous
process.

9. Calculate Poisson’s ratio from the combination of bulk and
tensile modulus, which allows all the terms in the stiffness
matrix to be calculated as a function of temperature and
rate.

10. Use temperature as a dummy variable to calculate a combi-
nation of strain (thermal expansion) and stress (thermal
expansion �modulus) to predict a full stress–strain profile
through yield, which is determined by the glass transition
condition of modulus tending to zero.

11. Calculate post-yield strain softening as stress relaxes back to
a low rate limiting yield stress.

3. Polymer model

From the summary of the modelling process, radical simplicity
of the polymer model is essential for making quantitative predic-
tions of complex mechanical properties tractable. The mean field
potential function approach uses ensemble averaged parameter
values that can be calculated most simply from chemical structure
either empirically using group additivity tables (van Krevelen,
1993; Porter, 1995) or connectivity indices (Bicerano, 1993), or
alternatively the parameters can be calculated using atomistic sim-
ulations right through to detailed quantum mechanics (Porter and
Vollrath, 2008). The main motivation for this form of model is to
replace the detailed numerical calculations of molecular dynamics
simulations of complex mechanical properties by a series of pre-
dictive analytical equations, in which the independently calculated
parameters do not have to be obtained by fitting the experimental
data they are trying to predict.

For polymers and many organic materials, their response to
mechanical deformation is determined largely by the weak van
der Waal’s forces between groups of atoms normal to the chemi-
cally bonded polymer chain axis. Following the lead of molecular
mechanics simulations (Theodorou and Suter, 1985) and correla-
tions with pressure–volume observations (Arends, 1993), such
forces can be represented by a simple 6-12 Lennard-Jones equation
for energy as a function of separation distance between chains. To a
good first approximation, the stiffness in the chain axis is large en-
ough for volume, V, to be proportional to separation distance
squared, such that the potential energy well of group interactions,
E, with a depth equivalent to the zero-point cohesive binding en-
ergy, Ecoh, at the volume V0 can be written

E ¼ Ecoh
V0

V

� �6

� 2
V0

V

� �3
 !

ð1Þ

A second expression relates the E and Ecoh in terms of the positive
energy contributions of thermal energy, HT, and ‘configurational’
energy, Hc, that takes E out of the well minimum.

E ¼ �Ecoh þ Hc þ HT ð2Þ

The term Hc represents the non-minimum energy of conformers
that stabilize the quantum mechanics zero-point vibrational energy
of the polymer chains, and can be quantified to a good approxima-
tion by values of 0.04Ecoh and 0.106Ecoh for crystal and amorphous
glass states of matter, respectively, which are additive in the frac-
tion of each state. The broader significance of Hc is discussed in
more detail elsewhere (Porter, 1995; Porter and Vollrath, 2008).

The heat capacity of polymers has been investigated extensively
by Wunderlich et al. (1989), and the most important contribution
to mechanical properties has been shown to be a one-dimensional
Debye function of skeletal mode vibrations in terms of number of
degrees of freedom per group, N, the reference temperature of
cooperative skeletal vibrations, h1, and temperature, T. Other local
mode vibrations of atomic groups affect the bulk heat capacity, but
do not contribute to the temperature dependence of mechanical
properties. GIM simplifies the Debye function into an empirical
relation for specific heat capacity, C, and for ease of calculation
has formulated a table of atomic group contributions and selection
rules for N and h1. If R is the molar gas constant

C � NR
6:7T
h1

� �2

1þ 6:7T
h1

� �2 ð3Þ

Using C to calculate the thermal energy term, HT, in the potential
function is necessary, since N changes with temperature as new de-
grees of freedom are activated above a number of transition tem-
peratures that play an important role in predicting mechanical
properties. HT is then given by

HT ¼
Z T

0
C dT J=mol ð4Þ

Group contribution tables are available for the model parameters of
Ecoh, van der Waal’s volume, Vw (where V0 = 1.26Vw), and molecular
weight, M, which allows the model relations to be quantified for any
polymer composition and structure (van Krevelen, 1993; Porter,
1995). The zero-point potential function of Eq. (1) can be applied
to the local potential well at any temperature simply by using the
new equilibrium well depth, ET, and volume VT.

Equilibrium volumetric properties such as density and volumet-
ric expansion coefficients, a, are calculated by solving Eqs. (1)–(3)
as a quadratic equation in (V/V0)3 as a function of temperature.
Again due to changes in degrees of freedom at transition tempera-
tures, it is best to calculate volumetric properties using thermal
expansion relative to a reference point using an expression for a
in terms of the skeletal heat capacity, C (Porter, 1995)

a � 1:38
Ecoh

C
R

ð5Þ

The utility of this approach for understanding the role of structural
elements in a polymer structure is perhaps best illustrated by the
change in the parameter N for degrees of freedom due to crosslink-
ing or branching in a thermoset resin (Jones, 2005; Foreman et al.,
2006). Here, the value of N is reduced by 3 for every chain branch
site in the structural group to reflect the loss of vibration freedom
due to the normal constraints of the bonding. Thus, properties such
as glass transition temperature and thermal expansion coefficient
(and thereby mechanical properties) can be predicted as a function
of crosslinking or degree of cure. Thus, a clear link between polymer
structure and properties makes this a very powerful tool in polymer
design or optimisation of a balance of properties.

Table 1 gives a list of the GIM parameter values for the two
example thermoplastic polymers of PC, and atactic PMMA. The
main problem for quantifying parameters comes in assigning de-
grees of freedom, N, for conventional atactic PMMA, which is a
mixture of iso- and syndiotactic conformers, each with very differ-
ent glass transition temperatures that correspond to values of N of
6 and 9, respectively, due to the mobility constraints imposed by
the acrylate side groups. We have adopted a conventional view
of a predominance of the syndiotactic form with a fraction of about
0.75 for an average value of N = 6.7 (McRum et al., 1967), which
corresponds to a model glass transition temperature of 410 K at a
reference frequency of 1 Hz.

D. Porter, P.J. Gould / International Journal of Solids and Structures 46 (2009) 1981–1993 1983
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Fig. 1 shows predictions of density and thermal expansion coef-
ficient for the two polymers as a function of temperature, using
transition temperatures at the reference rate of 1 s�1. The pre-
dicted values of transition temperatures, density and thermal
expansion coefficient at 300 K are given in Table 1, alongside the
observed values (given in brackets) (Richeton et al., 2006; Mulliken
and Boyce, 2006; van Krevelen, 1993), with which they are in good
agreement.

4. Equation of state

Pressure is calculated as a function of volume using the differ-
ential of the potential function of Eq. (1)

P ¼ dE
dV
¼ 6ET

VT

VT

V

� �4

� VT

V

� �7
 !

ð6Þ

The pure elastic form of bulk modulus, Be, is similarly calculated as
a derivative of energy or pressure.

Be ¼ V
d2E

dV2 �
6ET

VT
5

VT

V

� �4

� 8
VT

V

� �7
 !

ð7Þ

which simplifies at low strains to

Be � 18
ET

VT
ð8Þ

Without considering the specific case of highly oriented polymeric
fibres, many polymers at the continuum level behave as isotropic
materials with a random distribution of molecular chain orienta-
tions or crystal domains. This allows us to use the pure elastic form
of bulk modulus as the reference elastic parameter from which
other elastic modulus terms can be derived in the following sec-
tions. However, it is interesting here to illustrate the use of the
model for predicting the equation of state for the example polymers
PC and PMMA under high pressure shock conditions (a reference
volumetric elastic state, where the deformation time scales are
too short to allow relaxation processes due to molecular redistribu-
tion) to demonstrate the broad applicability of the model and its
practical utility relative to molecular dynamics simulations (Porter
and Gould, 2003, 2006). This condition also dominates many impact
events that are important for engineering.

At very high pressures associated with shock Hugoniot states,
we also need to take account of the smaller volumetric strain
due to the shrinkage in the relatively stiff chain axis, which has a
modulus of the order Yp � 240 GPa in a simple poly(ethylene)
structure, for example. As a good first approximation, we find that
the shrinkage in the two axes can be added without accounting for
synergy in the thermal energy function due to associated changes
in h1 as a pressure dependent heat capacity. The chain axis modu-
lus is suggested to have a volume dependence due to reduced nor-
mal cross-sectional area, which simultaneously increases modulus
and reduces force at a given pressure.

Yp ! Yp
V0

V

� �2

ð9Þ

For most hydrocarbon polymers, the stiffness in the chain axis due
to bending of chemical bonds is approximately constant if the trans-
and gauch-states are taken into consideration, such that Yp is inver-
sely proportional to chain cross-sectional area. An anomaly due to
chain axis deformation has been noted previously, where phenyl
rings collapse at a compressive stress of about 20 GPa to give a step-
wise reduction in volume and shifts in the Hugoniot Us–Up plots
seen in the PC example in Fig. 2 (Porter and Gould, 2003). Particle
and shock velocities, Up and Us, respectively, are calculated by the

Table 1
Model structural parameters and reference properties for the example polymers PC
and PMMA: see text.

Parameter/property PC PMMA

van der Waal’s volume Vw (cc/mol) 139 57
Molecular weight M (D) 254 100
Length in chain L (Å) 11 3.1
Cohesive energy Ecoh (J/mol) 83,000 45,000
Theta temperature h1 (K) 550 290
Activation energy DHb (J/mol) 44,000 70,000
Degrees of freedom:

N 14 6.7
Nc 32 6.7
DNb 6 2

Dissipation parameter A (GPa�1) 1.18 1.60
Cumulative loss:

tanDb 4.7 8.3
tanDg 22 57

Tb (K) at 1 s�1 187 (193) 285 (288)
Tgr (K) at 1 s�1 427 (423) 410 (378/399)
Density (kg m�3) at 300 K 1230 (1200) 1176 (1170)
Thermal expansion coefficient (10�4 K�1) 2.18 (2.00) 1.96 (1.96)

1000

1050

1100

1150

1200

1250

1300

0 100 200 300 400 500 600 700
Temperature (K)

D
en

si
ty

 (k
gm

-3
)

0

1

2

3

4

5

6

7

8

Th
er

m
al

 E
xp

an
si

on
 C

oe
ff.

 (1
0-4

 K
-1

)

Density

Thermal expansion

Fig. 1. Predictions of density and thermal expansion coefficient for the PC (dashed lines) and PMMA (solid lines) examples, with observed values shown as points for
reference (van Krevelen, 1993).
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usual expressions in terms of model parameters that can all be pre-
dicted by the model (Porter and Gould, 2006).

Up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� V=VTÞ

qT

s
; Us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

ð1� V=VTÞqT

s
ð10Þ

Fig. 2 shows a predicted pressure–volume line for PC against exper-
imental data points obtained from impact experiments (Carter and
Marsh, 1997). Volume is in the form of V/VT, and the parameters re-
quired for Eq. (6) are calculated as VT = 207 cc/mol and ET = 55.3 kJ/
mol. The deviation between model and observation above about
20 GPa is proposed to be due to the collapse of phenyl rings to a
more compact, but energetically unfavourable, form (Porter and
Gould, 2003).

Fig. 3 shows the common form of a Us–Up plot for PMMA from
plate impact experiments in the form of a line predicted by Eqs. (6)
and (10) against experimental data points (Carter and Marsh,
1997). Here the calculated model parameters are VT = 84.7 cc/mol
and ET = 29.2 kJ/mol and qT = 1180 kg m�3.

The role of the bulk modulus parameter Be is that of a reference
pure elastic modulus term, from which all the other engineering
modulus parameters in the full stiffness matrix can be calculated.
To do this, in the next section we discuss the role of energy dissi-
pation under non-ideal generalised deformation geometries and at
finite rates, where molecular redistribution occurs to minimise the
local potential energy of intermolecular interactions.

5. Energy dissipation and loss tangent

With bulk modulus as the reference parameter for elastic en-
ergy storage, we now need to derive relations for energy dissipa-
tion at the molecular level to quantify the full viscoelastic
response of a polymer. Since energy dissipation processes in a
polymer are still not fully explained or predicted quantitatively
at a fundamental level, we need to quantify loss processes in a
pragmatic way that is practically useful. We believe that establish-
ing the most important characteristics of loss processes in this way
will then act as a guide how to make predictions directly from
atomic level simulations.

Loss processes are split into two forms. The first is called ther-
momechanical loss, where mechanical energy is transformed irre-
versibly into heat simply by means of changes in thermal
parameters that are induced by mechanical loading. The second
is the energy dissipated through transition events, where the num-
ber of active degrees of freedom changes in a polymer due to
changes in temperature or mechanical loading. Generally, the
mechanical loss spectrum of a polymer consists of a low-level
baseline due to thermomechanical loss and large peaks due to
transition events, which are considered separately below.

The parameter used to quantify energy dissipation is loss tan-
gent, which is defined quite loosely here as the ratio of energy dis-
sipated to energy stored in a deformation cycle at a given
temperature and rate or frequency.

5.1. Thermomechanical loss

As mechanical load is applied to a material, the distances be-
tween atoms and molecules change. This, in turn, changes the elas-
tic modulus of the polymer, which then changes thermal
parameters such as the reference temperatures in the Debye mod-
els for heat capacity. This process effectively converts mechanical
energy irreversibly to heat, and was used in the first formulation
of GIM to quantify loss tangent as being proportional to the tem-
perature gradient of bulk elastic modulus (Porter, 1995). The pro-
portionality constant, A, is determined by structural parameters
of the characteristic mer unit, and takes a range of values for most
polymers in the range 1–2 GPa�1.

tan d ¼ �A
dB
dT
¼ �1:5� 105L

h1M
dB
dT

ð11Þ

where L is the length of the mer unit in the polymer chain axis and
M is its molecular weight. Since the changes in bulk modulus with
temperature can be calculated in using Eq. (8), the baseline thermo-
mechanical loss tangent can be calculated quite simply using the
model parameters that characterise the molecular structure, and
takes a value of the order 0.01.
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Fig. 2. Comparison of predicted and experimental (Carter and Marsh, 1997) compaction of PC under shock conditions.
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5.2. Loss peaks due to transition events

In this model, peaks in loss tangent are attributed to transition
events in a polymer, where the number of degrees of freedom in
the mer unit changes through a limited range of temperatures.
Again rather simplistically, we split these events into two types.
The upper temperature peak is associated with the glass transition
at Tg, and is due to the development of intermolecular motion
above this temperature. Lower temperature peaks are here attrib-
uted to the development of degrees of freedom due to the activa-
tion of intramolecular skeletal modes of vibration that are
constrained at lower temperatures around a reference temperature
Tb, using the usual nomenclature for polymer relaxations (McRum
et al., 1967).

A considerable body of experimental data is available for dy-
namic mechanical loss peaks in polymers, which has allowed mod-
els to quantify their position, magnitude, and distribution to be
developed as a function of temperature and rate (McRum et al.,
1967). Of these three descriptors, distribution is still the most dif-
ficult to quantify. We start here by looking at the glass transition,
since previous models have been successful in predicting polymer
properties in a wide range of polymer types and applications.

5.2.1. Glass transition
The most important temperature for a polymer is its glass tran-

sition temperature Tg, which can be calculated using a relation de-
rived from the potential functions by calculating the temperature
of the Born elastic instability criterion, where the elastic modulus
tends to zero with the second differential of energy with respect
to separation distance (Born, 1939; Porter and Vollrath, 2008).
The increased mobility of the atomic groups in the polymer chain
increases the number of degrees of freedom to 1.5 N, where two
normal modes gain an extra translational degree of freedom in
each chain atom, for example. A reference value of Tgr at a measur-
ing rate of 1 rad/s can be predicted by GIM relations in the model
structural parameters (Porter, 1995)

Tgr ¼ 0:224h1 þ 0:0513
Ecoh

N
ð12Þ

At a physical level, this relation says simply that Tg increases with
increasing chain stiffness and intermolecular binding energy, and
Tg decreases with increasing degrees of freedom.

Tg changes with frequency or rate and a number of methods are
available to calculate this dependency, such as the LWF approach
(Ferry, 1961). A typical change of Tg is about 4� per decade of rate
change. GIM uses a relation similar in form to the Vogel–Fulcher
function, which has the advantage that all the parameters can be
quantified in terms of model structural parameters, such that Tg

at the frequency, f, is calculated using

f ¼ f0 exp �1280þ 50 ln h1

T � Tgr þ 50

� �
ð13Þ

where f0 is the frequency of skeletal mode vibrations, and is calcu-
lated from the reference temperature h1 using the relation in Boltz-
mann’s constant, k, and Planck’s constant h

f0 ¼
kh1

h
ð14Þ

The most important attribute of the glass transition is that the ten-
sile and shear elastic moduli of a polymer reduce by a factor of
about 1000 above Tg. In this model, we identify the thermal glass
transition condition directly with the mechanical yield point of a
polymer, where modulus tends to zero. Consequently, the fre-
quency dependence of Tg becomes the rate dependence of the yield
point: note here that we adopt the broad simplification that strain
rate is numerically equivalent to the angular frequency, 2pf, rather
than make detailed calculations for any specific deformation geom-
etry (Mulliken and Boyce, 2006).

In addition to the position of the elastic instability point at Tg or
the yield point, we now need to calculate the magnitude of energy
dissipation through this point. To do this, the cumulative loss tan-
gent through the Tg loss peak, tanDg, is defined as the total area un-
der the loss tangent leak, without including the baseline
thermomechanical loss. A predictive expression for this loss
parameter has been derived in previous work by quantifying the
energy changes in the polymer due to the onset of new transla-
tional degrees of freedom at Tg (energy dissipated) relative to the
energy required to take the polymer through the transition (energy
stored) (Porter, 1995)
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tan Dg � 0:0085
Ecoh

Nc
ð15Þ

where Nc is the number of active degrees of freedom in the chain
axis that can absorb energy when stretched, and can be calculated
using group contribution tables in the usual way. For the example
polymers, PC has Ecoh = 83 kJ/mol and Nc = 32 for tanDg = 22, and
atactic PMMA has averaged values of Ecoh = 45 kJ/mol and Nc = 6.7
for tanDg = 57.

The distribution of tand as a function of temperature through Tg

is approximated by assuming a simple Gaussian distribution
around the peak position. For a polymer composed of single mer
unit types, the distribution of parameter values due to many differ-
ent intermolecular interactions tends to a limiting low value of
standard deviation in temperature of sg � 6� at a reference rate of
1 s�1 due to the inherent natural distribution of kinetic energy in
the atomic groups. The model distribution function takes the form

tan dg ¼
tan Dg

sg

ffiffiffiffiffiffi
2p
p exp �

T � Tg
� �2

2s2
g

 !
ð16Þ

In this work, we assume that the thermal glass transition condition
is physically equivalent to mechanical yield at the elastic instability
point where modulus tends to zero under a combination of thermal
and mechanical conditions in the potential function. We will show
that this general equivalence makes the need for arbitrary activa-
tion criteria for yield, such as an activation volume, redundant (Zer-
illi and Armstrong, 2007)

5.2.2. Beta peaks
While the mechanism, position, distribution, magnitude, and

rate dependence of glass transition events can be explained and
quantified by a number of different models or experimental tech-
niques, the same cannot be said about low temperature relaxation
processes that give mechanical loss peaks often well below the
glass transition.

In GIM, the origin of beta loss peaks is the activation of intramo-
lecular degrees of freedom as constraints on specific groups of
atoms are relaxed through and above Tb. For many engineering
polymers such as PC, this is attributed to the onset of torsional mo-
tion in main-chain aromatic rings. For branched polymers such as
PMMA, it is the relaxation of stronger polar bonds between side
chains (Mulliken and Boyce, 2006). These relaxation events can
be treated as a first order Arrhenius function in activation energy
and the frequency of skeletal mode vibrations in the polymer
chain, f. The activation energy, DHb, for such events can be calcu-
lated using quantum mechanics simulations of the energy to ex-
ceed the rotational barriers that constrain the groups of atoms.
For aromatic rings, this energy is about 40–50 kJ/mol that depends
upon the adjacent chain atoms (Bicerano and Clark, 1992; Hutnik
et al., 1991), and for PMMA the relaxation of the ester side groups
is taken to be about 70 kJ/mol in this work to fit experimental data
using the relation (Mulliken and Boyce, 2006; McRum et al., 1967)

Tb ¼
�DHb

R ln r
2pf0

� � ð17Þ

where R is the gas constant and r is the applied rate of strain relative
to the angular frequency of skeletal mode vibrations 2pf0 from Eq.
(14). A typical change of Tb is about 15� per decade of rate change.

The magnitude of the beta loss peaks is again quantified by a
cumulative loss tangent, tanDb. Predictive equations for tanDb

are far less defined than for the glass transition, but the same gen-
eral approach is adopted here of taking the ratio of energy change
through the transition due to the onset of DNb skeletal degrees of
freedom through a temperature interval of DTb with Nc degrees
of freedom in the chain at Tb to suggest

tan Db �
Tb

DTb

DNb

Nc
� 25

DNb

Nc
ð18Þ

The general proportionality between Tb and DTb was demonstrated
in the original GIM model for beta relaxations, but the quantitative
value of 25 for the proportionality constant has been found by
extensive modelling and correlations between the width of the
intrinsic beta relaxation peak at half height and Tb. This proportion-
ality tells us that the peak distribution width must increase as the
peak temperature increases with increasing rate or frequency to
maintain constant total cumulative loss tangent area under the
peak.

The distribution of beta peaks is much broader than for the glass
transition, due to the large number of different intramolecular con-
formations that an amorphous polymer chain can adopt to influ-
ence Tb. In principle, detailed molecular dynamics simulations of
molecular motion should be able to predict the distribution width
DTb (Hutnik et al., 1991). However, we have not yet found a satis-
factory method that gives good correlation with observation. In
practice, the overall total distribution is usually much broader than
for Tg and can be fitted with a Gaussian distribution to experimen-
tal data from a DMA analysis, often giving a standard deviation, sb,
in the range 40–80�, with a typical value of 60� at a rate of 1 s�1

that is used generally in this work.

6. Engineering moduli

The previous sections have outlined how storage and dissipa-
tion of mechanical energy of deformation in a polymer can be de-
scribed quantitatively by the two reference parameters of elastic
bulk modulus, Be, and loss tangent, respectively. Most important
is that these parameters are calculated from the molecular struc-
ture and molecular level processes in the polymer and are both
temperature and rate dependent. The practically important engi-
neering properties such as Young’s modulus, shear modulus, and
Poisson’s ratio now need to be formulated in terms of these refer-
ence parameters.

The first modulus to be considered is the bulk modulus, B, at
lower rates of deformation than the ideal elastic value of Be under
shock conditions. B reduces relative to Be due to the mechanical en-
ergy dissipated as atoms and molecules are rearranged to attain a
lower total energy as volume is changed during deformation. The
main changes in B are attributed to the change in the cohesive en-
ergy through transitions, where the number of degrees of freedom
changes. Previous work has shown that the fractional change in
cohesive energy through the glass transition is about 0.5, which
is numerically identical to the fractional change in the degrees of
freedom that develop through Tg due to the increased chain mobil-
ity, DNg/N. For beta transitions, a similar argument is proposed that
the fractional change in degrees of freedom, DNb, relative to the
intramolecular skeletal modes, Nc, gives an equivalent fractional
change in the cohesive energy through Tb. If the labels DNg(T)
and DNb(T) are used to denote the cumulative development of
the new degrees of freedom at a temperature T, the combination
of the two dilatational loss processes can be expressed to a first
approximation as

B ¼ Be 1� DNbðTÞ
Nc

� �
1� DNgðTÞ

N

� �
ð19Þ

Eq. (19) says simply that bulk modulus at low rates decreases rela-
tive to the ideal elastic form, due to energy dissipation as the de-
grees of freedom in the polymer change, and can be scaled in
terms of temperature and rate by the distribution of the loss tan-
gent through the transitions in Eq. (19), for example.

A similar logic is applied to calculate Young’s modulus, Y. Again
we start with the reference elastic parameter of Be and calculate
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the effect of mechanical energy dissipation through the transitions
during uniaxial deformation, which serves to reduce the value of Y
relative to Be. A new GIM expression for Young’s modulus below
the glass transition, Yb, has recently been published (Vollrath and
Porter, 2005), which shows a direct relationship between Y and
the combination of the elastic bulk modulus, Be and the cumulative
loss tangent through the beta transition,

R T
0 tan db dT.

Yb ¼ Be � exp �
R T

0 tan db dT
A � Be

 !
where A ¼ 1:5� 105L

h1 �M
ð20Þ

Eq. (20) is derived from the proportionality between the tempera-
ture gradient of modulus and loss tangent, where A is the propor-
tionality constant in terms of structural parameters that generally
has values in the range 1–2 GPa�1 for most polymers, as in Eq.
(11). Unfortunately, this simple proportionality breaks down as
the Young’s modulus reduces dramatically through Tg, such that a
separate relation needs to be invoked for Y to cover temperatures
through and above Tg. This relation is taken from the original GIM
model that predicts the rubberlike plateau modulus above Tg due
to the very high energy dissipation factor (loss tangent) through
the glass transition, which has been shown previously to give good
predictions of the rubberlike plateau modulus above Tg as a single
continuous function through Tg (Porter, 1995)

Y ¼ Yb

1þ
R T

0 tan dg dT
� �2 ð21Þ

The temperature and rate dependence of the engineering moduli
are embraced by the rate dependence of the main transitions at
Tb and Tg. At this stage all the applied strains are taken to be very
small in the context of a dynamic mechanical analysis, DMA, such
that the tensile and compressive values of Y are taken to be
identical.

The bulk and tensile moduli are combined to give a predicted
value of Poisson’s ratio, m, using the standard relation

m ¼ 0:5 1� Y
3B

� �
ð22Þ

The combination of Poisson’s ratio and B or Y can be used to predict
any other modulus parameter if the polymer is taken to be an iso-
tropic material. In addition, previous work has suggested that Pois-
son’s ratio can be used to indicate the mode of failure under

tension; m < 0.38 suggests a tendency to brittle failure (Porter,
1995).

Fig. 4 shows predictions of the dynamic properties of PC as solid
lines for the tensile elastic modulus and loss tangent, noting that
the loss tangent curves are plotted simply as the two relaxation
peaks independently, without the low level thermomechanical
contribution with a relatively constant value of the order 0.01 as
a lower limiting baseline. The dashed lines in Fig. 4 are experimen-
tal data taken from Mulliken and Boyce for tensile modulus (Mul-
liken and Boyce, 2006) and a standard loss tangent curve (McRum
et al., 1967). Predicted property values for PC at a typical temper-
ature of T0 = 300 K and a strain rate of 0.01 s�1 are B = 3.9 GPa,
Y = 2.1 GPa, and m = 0.405.

Predicted tensile modulus values are often higher at low tem-
peratures relative to dynamic mechanical spectra, but correspond
well to modulus values obtained in tensile tests at normal ambient
temperatures. We attribute this anomaly to excess free volume
that is frozen into the polymer during sample preparation that can-
not relax or ‘age’ at lower temperatures (Porter, 1995), and thereby
maintains a too low value of modulus as temperatures are reduced
relative to an ideally annealed sample for which predictions are
relevant.

Fig. 5 illustrates the interrelations between the predicted values
of dynamic mechanical properties (Be, B, Y, and m) for PMMA at a
strain rate of 0.01 s�1. Predicted property values at T0 = 300 K are
B = 4.5 GPa, Y = 3.1 GPa, and m = 0.376.

7. Constraints on loss history

Note that the model for engineering properties assumes that
the polymer is in thermal equilibrium, and that the predicted prop-
erties are effectively those that are measured in a dynamic
mechanical analysis, where sufficient thermal energy is available
for the relaxation processes (changes in degrees of freedom) to de-
velop fully at a specified temperature or rate/frequency. However,
stress–strain tests are usually carried out at a constant tempera-
ture or high rate, where not all the degrees of freedom associated
with the transitions may have developed. Thus, we need to show
how these constraints affect the physical properties required to
predict engineering stress–strain relations in polymers.

In a beta relaxation process, new skeletal degrees of freedom
are activated through Tb in a first order temperature activated pro-
cess given by Eq. (17). The glass transition process is different, in
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that new translational degrees of freedom are activated by a com-
bination of thermal and mechanical energy corresponding to the
elastic instability condition at a defined separation distance be-
tween groups of atoms. Since Tb increases at a rate of about 15�
per decade of rate, relative to Tg increasing at a rate of only 4�,
the Tb loss peak (and the associated increase in thermal energy
due to new degrees of freedom) can often catch up with the Tg loss
peak and the observation temperature, T0. The effect of this cou-
pling between Tb and Tg is that not all the extra degrees of freedom,
DNb, may be activated at the temperature of measuring stress–
strain relations, T0, and is particularly important at higher rates
of strain, which is equivalent to the Richeton et al. (2006) concept
of cooperative relaxation. While this in no way affects the predic-
tion of DMA spectra to validate the model, it has important effects
upon the prediction of stress–strain relations.

The first consequence of limiting the beta relaxation degrees of
freedom to their value at T0 is that the effective value of Tgr is
shifted to a higher value by the lower effective value of N in Eq.
(12). Similarly, tensile modulus is increased in Eq. (20) and thermal
expansion is reduced in Eq. (5). We will see that these changes
then also increase the yield stress and strain, and thereby can have
a significant effect on the nonlinear rate dependence of mechanical
properties. Therefore, it is important to note that the cut-off value
of T0 must be used in any integration of beta degrees of freedom

and their consequent loss tangent parameters when predicting
stress–strain relations at T0. This is illustrated in Fig. 6, where the
cumulative loss tangent predicted for PMMA reduces below the
cut-off temperature T0 as rate increases.

Another important constraint on properties is that the extra de-
grees of freedom for the glass transition process are not activated if
the observation temperature T0 is below Tg, such that properties
such as thermal expansion coefficient do not increase significantly
through yield, as seen in Fig. 1.

In order to specify the effect of thermal constraints on model
parameters and properties, we use a subscript label r for any prop-
erty that has been calculated using constrained parameters in or-
der to calculate the stress–strain response. The main constrained
properties are ar, Yr, and mr.

8. Nonlinear stress–strain to yield

The predicted volumetric and dynamic mechanical properties
now need to be transformed into large strain engineering stress–
strain curves as a function of temperature and rate of strain. As a
start, we will first predict stress–strain relations through the yield
point without considering post-yield strain softening and harden-
ing, which are discussed separately. To do this, strain and stress
are predicted separately as a function of a dummy variable of a
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temperature parameter in terms of the previously predicted phys-
ical properties of ar, Yr, and mr, which are thermal expansion coef-
ficient, Young’s modulus, and Poisson’s ratio, respectively, but with
their values constrained by the evolution of the degrees of freedom
at a finite temperature T0 below Tg.

Strain, e, is predicted using the potential function approach by
taking strain to be equivalent to the thermal expansion over a tem-
perature range. In this case, temperature is used as a dummy var-
iable from the observation temperature, T0, to an arbitrary
maximum value well above Tg.

e ¼
Z T

T0

ar dT ð23Þ

Tensile stress, rt, is predicted using the Young’s modulus over the
strain equivalent to thermal expansion, again using temperature
as a dummy variable, and that volumetric strain is used in combina-
tion with modulus that has been scaled relative to the bulk volu-
metric modulus

rt ¼
Z T

T0

Yrar dT ð24Þ

Transforming tensile stress to compressive stress has been tenta-
tively linked to the pressure dependence of elastic modulus (Rich-

eton et al., 2006). However, the potential function approach of
this work links the lower modulus at large tensile strains with the
lower binding energy between interacting groups of atoms at in-
creased separation distance. Thus, compressive stress, rc, is calcu-
lated from Eq. (24) using a factor 2mr to adjust for expansion in
the axes normal to the compression axis (Porter, 1995)

rc ¼
rt

2mr
ð25Þ

This deceptively simple formulation of strain and stress has proven
to be very powerful as a predictive tool, and includes all the infor-
mation about the polymer structure and the transition tempera-
tures that dominate mechanical properties in engineering
polymers.

9. Examples: PC and PMMA

To illustrate the quantitative capabilities of the model, two
example polymers of PC and PMMA are presented below, and are
chosen so that predictions can be compared directly with the work
of Richeton et al. (2003, 2006, 2007) and Mulliken and Boyce
(2006). Table 1 gives a list of the GIM parameter values for the
two example thermoplastic polymers of PC, and atactic PMMA.
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Fig. 7 plots the predicted tensile and compressive stress–strain
relations for PC at 300 K and a strain rate of 0.01 s�1 without
including the effect of strain softening or hardening. Experimental
data under tension (Porter, 1995) and compression (Richeton et al.,
2006) is also plotted in Fig. 7 under as near the same conditions as
could be found in the literature.

Fig. 8 then plots the predictions for compressive stress–strain
for PMMA for a wide range of strain rates from 10�3 to 104 s�1 at
a temperature of 300 K, which show a much higher plateau yield
stress at high rates due to the synergy between the relaxation
peaks as the beta relaxation catches up with the glass transition
at high rates. Predicted solid lines show good agreement with pub-
lished experimental data of Richeton et al. (2006), shown as dashed
lines.

Figs. 9 and 10 then compare the predictions of yield stress for PC
and PMMA as a function of rate at T0 = 300 K and as a function of
temperature at a reference rate of 0.01 s�1, and also shows exper-
imental data from Richeton et al. (2006) and Mulliken and Boyce
(2006) to demonstrate the overall capability of the model. Given
the variability of the experimental data, the model predictions
are reasonable. The main problem of predictions for PMMA is that
atactic PMMA contains the two iso- and syndiotactic forms, which
have very different values of Tg of 322 and 450 K, respectively, such

that relaxation effects between the two independent values is dif-
ficult to quantify without a more detailed set of relaxation func-
tions for any specific PMMA sample.

10. Post-yield strain softening and hardening

At this stage in the model development, we introduce the gen-
eral form of relations for post-yield behaviour of polymers that are
consistent with the overall model framework. Above the glass tran-
sition and yield conditions, the molecular groups in the polymer
attain new translational degrees of freedom in the chain axis and
are able to translate relative to each other to allow macroscopic
plastic flow, which causes stress relaxation above yield. The first
problem here is to quantify the magnitude and rate of stress relax-
ation post-yield.

Figs. 7–9 show that yield stress increases with increasing rate
due to the non-equilibrium conditions and their consequences
upon the relaxation conditions. There is effectively a lower limiting
yield stress at infinitely low strain rates that is the minimum stress
at a specific temperature that can induce yield flow. Since the poly-
mer group mobility increases rapidly and significantly above yield,
we suggest that the yield stress at any finite strain rate must relax
down to this lower limiting yield stress, ryo.
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The simplest way to estimate stress relaxation rate with strain
is to assume that yield is an activated rate process with an activa-
tion energy, DHy, and that the probability of stress relaxation in-
creases with increasing strain energy as more dynamic
rubberlike states are generated. Since energy is proportional to
strain squared, we suggest an expression for post-yield strain
relaxation, qy(e) from qyr at any rate r in terms of strain, e, relative
to an activation strain for yield, eya, with a form

ryðeÞ ¼ ryo þ ðryr � ryoÞ exp � eya

e

� �2
� �

ð26Þ

A suitable value for eya would be to predict the onset of strain soft-
ening at the strain where stress has reached its plateau value of yield
stress at any rate of strain in plots like those shown in Figs. 7 and 8.
The exponential decay form of Eq. (26) has the onset of stress relax-
ation at a value of about 0.5eya. This suggests a value of eya � 0.14 if
the attainment of the yield stress is at a characteristic strain of
around 0.07 in Figs. 7 and 8. Fig. 11 plots a model form of Eq. (26)
for PMMA at a number of strain rates, using the yield stress of
100 MPa at a value of strain rate of 0.0001 for ryo, where Fig. 9 shows
a trend to a limiting lower value for yield stress, which is in good
general agreement with the experimental data and model forms pre-
sented by Mulliken and Boyce (2006) and Richeton et al. (2006).

Strain hardening in polymers can be attributed to reconversion
of rubberlike states that are generated through the glass transition
or yield process back into glassy or crystal states of matter as
mechanical energy of deformation forces the groups of atoms back
together under high strains (Porter, 1995; Vollrath and Porter,
2005). A general form for post-yield strain hardening was sug-
gested in a recent refinement of the original GIM formulation for
PC that was developed for spider silk polymers, which show very
significant strain hardening to massive values of failure stress
(Vollrath and Porter, 2005). However, the complex combination
of stress relaxation due to dynamic post-yield rubberlike states
and strain hardening due depletion of these states as a function
of strain and strain rate is beyond the scope of this work, but the
underlying mechanisms are consistent with the basis principles
outlined in this paper.

11. Concluding remarks

The model presented here allows the highly nonlinear mechan-
ical properties of polymers as a function of temperature, strain and

strain rate to be calculated directly from their molecular structure.
The model is based upon the simple fundamental premise that
mechanical properties are a direct consequence of energy stored
and energy dissipated during deformation of a material. This pre-
mise is transformed into a consistent set of structure–property
relations for the engineering constitutive relations in a polymer
by quantifying energy storage and loss at the molecular level of
interactions between characteristic groups of atoms in a polymer.
By focussing the molecular level model directly on this premise,
the constitutive relations can be formulated as a straightforward
set of analytical equations that predict properties directly in terms
of a very small set of structural parameters that can be calculated
independently from the chemical composition and morphology of
a polymer.

The combination of equation of state and nonlinear consti-
tutive relations presented here can be applied directly to engi-
neering simulation methods such as dynamic finite element
simulations as a complete stiffness matrix for an isotropic
polymer by using the combination of bulk and tensile moduli
predicted here as a function of temperature, strain, and strain
rate.

We have shown elsewhere that the basic model can be applied
successfully to more complex polymers than the amorphous PC
and PMMA examples presented here in a more developed form
of the transformation of DTA to stress–strain properties. Semicrys-
talline polymers require additional relaxation temperatures to be
included in the model to differentiate the crystal and amorphous
transitions (Vollrath and Porter, 2005; Porter and Vollrath, 2008).
Thermoset resins include the reduction of degrees of freedom
due to branching or crosslinking sites (Jones, 2005; Foreman
et al., 2006; Foreman et al., 2008). Validation examples for a wider
range of such polymers using this model will be presented in fu-
ture work, along with a broader discussion of post-yield strain soft-
ening and hardening. An energy density based failure initiation
criteria has also been formulated for structural materials else-
where in a form that is consistent with the model presented here
(Porter, 1995, 2007). The combination of these different model ele-
ments will allow systematic design or optimisation of polymers for
demanding structural engineering applications. In addition, the ap-
proach can be applied directly to complex biological materials,
which offers considerable potential for biomechanics and bioengi-
neering applications (Vollrath and Porter, 2005; Porter and Voll-
rath, 2008).
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