## Моделирование процесса лазерной ударной проковки



Федеральное государственное бюджетное учреждение науки Институт механики сплошных сред Уральского отделения Российской академии наук



#### Лаборатория Термомеханики твердых тел

Контакты

Адрес: 614013, Россия, г. Пермь, ул. Академика Королёва, 1 Телефон: +7(342)2378317 E-mail: poa@icmm.ru



### Моделирование лазерной ударной проковки

#### Математическая модель

| 3                   |                   |               | Компьютерный                                                                                                                                                |  |                          |
|---------------------|-------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------|
| S SIMULIA<br>ABAQUS | Исходные данные   |               | пасчот                                                                                                                                                      |  | Итог                     |
|                     | Геометрия детали  |               | $\operatorname{div}\boldsymbol{\sigma} = \rho \frac{\operatorname{d}^2 \mathbf{u}}{\operatorname{d} t^2}$                                                   |  | Распределение остаточных |
|                     | Механические      | $\rightarrow$ |                                                                                                                                                             |  |                          |
| 📄 python            | параметры металла |               | $P_{peak} = 0.01 \sqrt{\frac{\alpha}{2\alpha + 3}} \cdot Z \cdot I$                                                                                         |  | напряжений в детали      |
|                     | Энергетические    |               | $E = \sigma \left[ 4 + B(c_{eq}^{pl})^n \right] \left[ 1 + C_{eq}^{pl} \dot{\varepsilon}_{eq}^{pl} \right]$                                                 |  |                          |
|                     | параметры лазера  |               | $I = O_{eq} = \left[ \sum_{i=1}^{n} + D(\mathcal{E}_{eq}) \right] \left[ 1 + C \prod_{i=1}^{n} \frac{\dot{\mathcal{E}}_{i}}{\dot{\mathcal{E}}_{0}} \right]$ |  |                          |

Возможности численного моделирования:

- Получение наиболее полной картины последствий применения ударной проковки детали для конкретного режима
- Оценка положительного эффекта лазерного воздействия на конкретную деталь до начала ее обработки
- Подбор режима лазерного воздействия для конкретной детали без проведения предварительных испытаний

### Алгоритм расчета процесса лазерной ударной проковки

Идентификация параметров определяющего соотношения для описания пластических деформаций, возникающих при высокоскоростном воздействии на металл



Решение динамической задачи о распространении упруго-пластических волн в материале, образующихся в результате импульсного воздействия на поверхность материала







Верификация профилей остаточных напряжений, полученных в результате расчета, по данным измерений

IV





### І. Идентификация параметров определяющего соотношения

#### Таблица 1 – Материальные параметры для соотношения Джонсона-Кука

| Материал      | А [МПа] | <i>В</i> [МПа] | <i>n</i> [1] | C [1]  | $\dot{\mathcal{E}}_{_0}$ [1/c] |
|---------------|---------|----------------|--------------|--------|--------------------------------|
| BT-6 (Ti64)   | 978     | 826            | 0.639        | 0.034  | 0.005                          |
| Алюминий      | 336     | 800            | 0.69         | 0.0048 | 0.005                          |
| (Al2024)      |         |                |              |        |                                |
| Инконель      | 485     | 1490           | 0.654        | 0.023  | 0.005                          |
| (Inconel 718) |         |                |              |        |                                |







Рисунок 2 – Аппроксимация экспериментальных диаграмм нагружения соотношением Джонсона-Кука для инконеля 718 (Inconel 718)

#### Модель Джонсона-Кука

$$\sigma_{y}(\varepsilon_{eq}^{pl}) = \left[A + B(\varepsilon_{eq}^{pl})^{n}\right] \left[1 + C\ln\frac{\dot{\varepsilon}_{eq}^{pl}}{\dot{\varepsilon}_{0}}\right]$$
(1)

 $\sigma_{_{\mathcal{I}}}$  – интенсивность напряжения на поверхности текучести

 $\dot{\mathcal{E}}_{_0}$  – опорная скорость деформации

<sup>р/</sup> – интенсивность пластической деформации

*А*, *В*, *n*, *C* – материальные параметры, характеризующие неупругое поведение материала



экспериментальных диаграмм нагружения соотношением Джонсона-Кука для алюминиевого сплава (AI 2024)

#### II. Распространение упруго-пластических волн в материале



Рисунок 4 – Распределение компоненты тензора напряжений, направленной вдоль приложенной нагрузки, в процессе лазерного импульсного воздействия на цилиндрический образец



Рисунок 5 – Распределение механического давления в процессе лазерного импульсного воздействия на цилиндрический образец



- плотность
- вектор перемещений
- время

σ



$$P_{peak} = 0.01 \sqrt{\frac{\alpha}{2\alpha + 3}} \cdot Z \cdot I \quad (3)^*$$

- корректирующий множитель α
- акустический импеданс
- интенсивность лазерного воздействия



Рисунок 6 – Распределение интенсивности тензора пластической деформации в процессе лазерного импульсного воздействия на цилиндрический образец

\*Fabbro R., Fournier J., Ballard P., Devaux D., Virmont J. Physical study of laser-produced plasma in confined geometry // J. Appl. Phys. 1990. Vol. 68. P. 775-784. https://doi.org/10.1063/1.346783

#### **III. Статическое равновесие**

**Уравнение равновесия**  $\operatorname{div} \boldsymbol{\sigma} = 0$  (4)



(a)

(б)

(в)

Рисунок 7 – Распределение по толщине цилиндрического образца (а) поля остаточных напряжений по Мизесу, (б) поля механического давления, (в) эффективной пластической деформации

# IV. Верификация по экспериментальным профилям остаточных напряжений



Рисунок 8 – Профили осевой и радиальной компоненты остаточных напряжений на расстоянии 1 мм от центра (маркеры – экспериментальные данные [1], черная кривая – результаты моделирования, приведенные в работе [2], зеленая и синяя кривая – результаты расчета с использованием разработанной модели)



Рисунок 9 – Профили эквивалентных пластических деформаций на расстоянии 1 мм от центра (черная кривая – результаты моделирования, приведенные в работе [2], зеленая кривая – результаты расчета с использованием разработанной модели)

[1] Nam T. Finite element analysis of residual stress field induced by laser shock peening, Ph.D. thesis, The Ohio State University. - 2002.

[2] Amarchinta H. Uncertainty quantifification of residual stresses induced by laser peening simulation, Ph.D. thesis, Wright State University. 2010.

### Моделирование остаточных напряжений в титановом сплаве BT-6



Рисунок 10 – Профили остаточных напряжений по толщине пластины, полученные при лазерной ударной проковке с пиковой интенсивностью (а) 3.3 ГВт/см<sup>2</sup> (3.1 ГПа), (б) 20 ГВт/см<sup>2</sup> (7.6 ГПа), (в) 30 ГВт/см<sup>2</sup> (9.3 ГПа), (г) 40.0 ГВт/см<sup>2</sup> (10.7 ГПа) (сплошная линия – результаты расчета; точки – результаты измерения остаточных напряжений методом сверления отверстий)

# Исследование влияния параметров лазерной ударной проковки на результирующее поле остаточных напряжений



Рисунок 11 – Распределения остаточных напряжений в части пластины, обработанной методом лазерной ударной проковкой с интенсивностью 10 ГВт/см<sup>2</sup> и размером квадратного пятна (а) 3 мм, (б) 1 мм



Рисунок 12 – Профили остаточных напряжений по толщине пластины, полученные при лазерной ударной проковке с размером квадратного пятна 3 мм и различным уровнем интенсивности лазерного воздействия



Рисунок 13 – Профили остаточных напряжений по толщине пластины, полученные при лазерной ударной проковке с интенсивностью 10 ГВт/см<sup>2</sup> и **различным размером** квадратного пятна

# Исследование влияния параметров лазерной ударной проковки на результирующее поле остаточных напряжений



Рисунок 14 – (а) Распределения остаточных напряжений <sup>I, mm</sup> части пластины, обработанной методом лазерной ударной проковкой с интенсивностью 10 ГВт/см<sup>2</sup>, размером *квадратного* пятна 3 мм и перекрытием 50%; (б) сравнение профилей остаточных напряжений для данного режима проковки с перекрытием и без перекрытия



обработанной методом лазерной ударной проковкой с интенсивностью 10 ГВт/см<sup>2</sup>, размером *круглого* пятна 3 мм и перекрытием 50%; (б) сравнение профилей остаточных напряжений для данного режима с **различной формой** пятна



Рисунок 16 – Профили остаточных напряжений по толщине пластины, полученные при лазерной ударной проковке с интенсивностью 10 ГВт/см<sup>2</sup>, размером квадратного пятна 3 мм и **различным количеством проходов** 

## Моделирование лазерной ударной проковки деталей сложной

### геометрии



Рисунок 17 – Распределение напряжений по Мизесу по обработанной (а) и противоположной (б) стороне лопатки



Рисунок 18 – Распределение механического давления по обработанной (а) и противоположной (б) стороне лопатки



Рисунок 19 – Распределение механического давления (а) и компоненты напряжения по направлению воздействия (б) по образцу



Рисунок 20 – Профиль остаточных напряжений по глубине образца для компоненты, перпендикулярной приложенной нагрузке На основе полученных результатов можно заключить, что применение численного моделирования процесса лазерной проковки позволит:

- Определить целесообразность лазерной ударной проковки детали до начала ее обработки.
- Снизить затраты времени и финансов на обработку деталей за счет уменьшения или полного исключения тестовых испытаний.



# Спасибо за внимание!

