

Разработка комплексной математической модели лазерного

удара для решения инженерных задач.

Оптимизация режимов обработки лазерным ударным упрочнением жаропрочного сплава Inconel 718 численным моделированием Докладчик: Кожевников Глеб Денисович Инженер НИО-205

Математическая модель повышения усталостной прочности ДСЕ ГТД

Оптимизация режимов обработки лазерным ударным упрочнением жаропрочного сплава Inconel 718 численным моделированием

¹ Fabbro R. et al. Physical study of laser-produced plasma in confined geometry //Journal of applied physics. – 1990. – T. 68. – №. 2. – C. 775-784. ² Johnson G. R., Cook W. H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures //Engineering fracture mechanics. – 1985. – T. 21. – №. 1. – C. 31-48.

Сравнение с экспериментальными данными

Распределение остаточных напряжений по глубине

Распределение остаточных напряжений по глубине

* Zhou Z. et al. A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy //International Journal of Impact Engineering. – 2011. – T. 38. – No. 7. – C. 590-596.

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Ð

Область растяжения в центре пятна

Решения:

- Использование менее симметричных пятен при обработке;
- Использовать перекрытие пятен на растянутую область;
- Уменьшать плотность мощности;
- 4. Использовать

```
многократные удары
```

Рис. 6 Механизм формирования области растяжения

Влияние времени импульса лазерного излучения

Влияние энергии лазерного излучения

Влияние параметров лазерного излучения

Ν	Energy (J)	Pulse width (ns)	Laser spot (mm)	Power Density
1	1,6	12	1,8	4,93
2	2,8	21	1,8	4,93
3	4,8	36	1,8	4,93
4	6	45	1,8	4,93
5	8	60	1,8	4,93

Повторные удары

напряжения, МПа

Остаточные

Изменение остаточных напряжений по глубине

Ν	Energy (J)	Pulse width (ns)	Laser spot (mm)	Power Density
1	4	35	0,15	6

Распределение остаточных напряжений по поверхности

Результаты и дальнейшие исследования

Результаты:

- 1. Получено качественное согласование модели лазерного ударного упрочнения для никелевого сплава Inconel 718 с экспериментальными данными на двух режимах: 6 и 7 ГВт/см2;
- 2. Оценено влияние энергии и времени импульса лазерного излучения, а также повторное воздействие на величину и глубину сжимающих остаточных напряжений в поверхностном слое;
- 3. Определены режимы обработки, решающие проблему зоны растяжения в центре пятна для никелевого сплава Inconel 718: 3-4 Дж, 10-25 нс, 1-2 удара.

Дальнейшие исследования:

- 1. Оценка влияния параметров лазерного излучения на деформации поверхности;
- 2. Оценить влияние перекрытия пятен;
- 3. Определение оптимальных НДС для усталостных образцов;
- 4. Учет влияния толщины абляционного и ограничивающего слоя на изменение магнитуды и времени действия давления на поверхность детали.